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Abstract
Recent shock-wave experiments with deuterium [1, 2] in a regime where
a plasma phase-transition has been predicted [3] and their theoretical
interpretation are the matter of a controversial discussion (see e.g. [4–8]). In
this paper, we apply ‘wave packet molecular dynamics’ (WPMD) simulations
to investigate warm dense hydrogen. The WPMD method was originally used
by Heller for a description of the scattering of composite particles such as
simple atoms and molecules [9]; later it was applied to Coulomb systems
by Klakow et al [10, 11]. In the present version of our model the protons
are treated as classical point-particles, whereas the electrons are represented
by a completely anti-symmetrized Slater sum of periodic Gaussian wave
packets. We present recent results for the equation of state of hydrogen
at constant temperature T = 300 K and of deuterium at constant Hugoniot
E − E0 + 1

2

(
1
n

− 1
n0

)
(p + p0) = 0, and compare them with the experiments and

several theoretical approaches.

PACS numbers: 03.67.Lx, 05.30.−d, 71.10.−w

1. Introduction

The behaviour of hydrogen at Mbar pressure remains controversial and poses a fundamental
challenge to experiment and theory. On the theoretical side, various complementary methods,
such as, e.g., density functionals or path-integral Monte Carlo, are used to investigate hydrogen
under these extreme conditions of temperature and density where quantum effects such as
the wave nature of the particles and their indistinguishability are important. In the wave
packet molecular dynamics (WPMD) method, which is based on a time-dependent variational
principle, these quantum effects are approximately taken into account by representing the
electrons by anti-symmetrized localized wave packets with a simple analytical form. The
wave packet approach reproduces fairly well many dynamic properties of quantum many-
body systems as has been shown by Heller for the scattering of composite particles such as
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atoms and molecules [9], by Feldmeier for heavy ion scattering [12] and by Klakow et al
for Coulomb systems [10, 11]. Usually Gaussian wave packets are employed. This reduces
the time evolution of a complex wavefunction in a full N-body quantum description to the
evolution of a few relevant parameters, such as positions, momenta and widths of the wave
packet, and scales down the amount of numerical work from the solution of a partial differential
equation to the much simpler case of a set of ordinary differential equations. Nevertheless
there remains the formidable task of anti-symmetrization. It is implemented in our approach
in terms of matrix inversions to which the calculation of expectation values of operators with
Slater determinants can be reduced.

In this paper, we present in section 2 the theory of WPMD, paying particular attention to
the anti-symmetrization of the many-body wavefunction. In section 3, we compare the results
for the equation of state of hydrogen with experiments [13] and present our calculations of the
Hugoniot of deuterium together with experiments [1, 2] and other theories [1, 4, 5, 8, 14, 15].

2. Theory of wave packet molecular dynamics

In our current application of the WPMD to hydrogen, the N protons of our simulation sample
are described classically, i.e. by their positions �RI and momenta �P I , whereas the N electrons
are represented by an anti-symmetrized product of one-particle wavefunctions ϕk(�xk):

�(�x1, . . . , �xN) = 1√
N! det (O)

∑
σ∈P

sgn(σ )

N∏
k=1

ϕσk
(�xk). (1)

Here, P is the set of permutations of order N, and O is the overlap matrix

Okl := 〈ϕk|ϕl〉. (2)

As an ansatz for the one-particle wavefunctions ϕk(�x) we take periodic Gaussian wave
packets [7]:

ϕk(�x) ∝
∑
�n∈Z

3

exp

[
−

(
3

4γ 2
k

+
ipγk

2h̄γk

)
(�x − �rk − �nL)

2 +
i

h̄
�pk(�x − �rk − �nL)

]
(3)

with the eight variational parameters
{�rk, �pk, γk, pγk

}
.

Since the wavefunctions ϕk and the associated densities ρkl are periodic with a period of
one box length L of the simulation cube, we can rewrite them in the Fourier representation
[16]:

ϕk(�x) =
∑
�ν∈Z

3

wk
�ν exp

(
2π i

L
�ν �x

)
(4)

ρkl(�x) := ϕ�
k(�x)ϕl(�x) =

∑
�ν∈Z

3

dkl
�ν exp

(
2π i

L
�ν �x

)
. (5)

Here, the complex Fourier coefficients wk
�ν of the wavefunctions depend only on the

variational parameters and satisfy the normalization condition

1 =
∫

L3

ϕ�
k(�x)ϕk(�x) d3x = L3

∑
�ν∈Z

3

∣∣wk
�ν
∣∣2

. (6)

The Fourier coefficients dkl
�ν of the densities can be expressed in terms of the coefficients

wk
�ν via

dkl
�ν =

∑
�µ∈Z

3

(
wk

�µ
)�

wl
�µ+�ν . (7)
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The Hamilton operator we use is given as Ĥ = Ĥ kin + Ĥ cou + Ĥ ext with

Ĥ kin =
∑

I

P 2
I

2M
+

∑
i

p̂2
i

2m
(8)

Ĥ cou = Hpp + Ĥ ee + Ĥ ep

= e2

4πε0


∑

I<J

1

| �RI − �RJ | +
∑
i<j

1

|�̂xi − �̂xj |
−

∑
I,j

1

| �RI − �̂xj |


 (9)

Ĥ ext = 9h̄2

8mγ 4
0

∑
i

(�̂xi − 〈�̂xi〉)2. (10)

Here, the indices I and J run over all protons, whereas the i and j run over all electrons
in the system. M and m are the masses of the proton and of the electron, respectively.

To avoid an infinite growth of the widths γk of unbound electrons, we confine every
wave packet in an external harmonic-oscillator potential Ĥ ext which moves together with the
centre of mass of the electron and thus does not influence its motion. It can be interpreted
physically as a constraint acting on the variance 〈(�̂xk − 〈�̂xk〉)2〉 of the wave packet. The
constant Lagrangian parameter γ0 adjusts the mean width of unbound electrons. To minimize
the influence on bound wave packets, γ0 is chosen much larger than the typical width of a
bound electron, e.g. in an atom or molecule [17].

The expectation value of the kinetic and potential energies of the Slater sum (1) can
be written in terms of the inverse overlap matrix Y = O−1 (2) and the matrix elements
Tkl := 〈ϕk|Ĥ kin|ϕl〉, Ukl := 〈ϕk|Ĥ ep|ϕl〉 and Vklmn := 〈ϕkϕl|Ĥ ee|ϕmϕn〉 [12]:

Ekin := 〈�|Ĥ kin|�〉 =
∑
kl

TklYlk = Tr(TY) (11)

Ecou,ep := 〈�|Ĥ ep|�〉 =
∑
kl

UklYlk = Tr(UY) (12)

Ecou,ee := 〈�|Ĥ ee|�〉 =
∑
klmn

Vklmn(YmkYnl − YmlYnk). (13)

Calculating the matrix elements Okl, Tkl, Ukl and Vklmn from the Fourier representation of the
one-particle wavefunctions, equation (4), we obtain

Okl = L3
∑
�ν∈Z

3

(
wk

�ν
)�

wl
�ν = L3dkl

0 (14)

Tkl = L

2m
(2πh̄)2

∑
�ν∈Z

3

�ν2 (
wk

�ν
)�

wl
�ν (15)

Ukl = − e2

4πε0

L2

π

∑
ν∈Z

3\{0}

1

�ν2
dkl

�ν
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I

exp

(
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L
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)
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Vklmn = e2

4πε0
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π

∑
ν∈Z

3\{0}

1
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−�νd
ln
�ν . (17)
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Figure 1. Equation of state of hydrogen at constant temperature T = 300 K. The WPMD result
is compared with ‘fixed-node diffusion Monte Carlo’ (DMC) simulations [19] and diamond anvil
experiments [13].

With the introduction of the matrices D�ν ≡ (
dkl

�ν
)
, equations (13) and (17) lead to

Ecou,ee = e2

4πε0

L5

π

∑
ν∈Z

3\{0}

1

�ν2

[
Tr(D−�νY) Tr(D�νY) − Tr(D−�νYD�νY)

]
. (18)

Formula (18) reduces the computational effort from calculating N! terms of the Slater
sum to one matrix inversion and several matrix products and scales like N3. Furthermore, the
matrix inversion itself is numerically very stable and no problem with the alternating signs of
the permutations occurs.

3. Results

We applied the WPMD method to the equation of state of hydrogen and deuterium. As we
are interested here in equilibrium properties only, we did not propagate the system in time
explicitly, but used a force-bias Monte Carlo algorithm [18] to simulate a canonical ensemble
characterized by Gibb’s distribution. The number of particles was 2N = 108 (54 protons
and 54 electrons). The Lagrangian parameter γ0 in Ĥ ext, see equation (10), was chosen as
γ0 = 0.64λth with the thermal wavelength λth = h̄/(mkBT )1/2. The pressure p of the system
is extracted via the virial theorem

p = 1

3V

(
2〈Ĥ kin〉 −

〈∑
k

�̂ξk

∂Ĥ pot

∂ �̂ξk

〉)
= 2n

3
(2Ekin − 2Eext + Ecou) (19)

where �̂ξ = (�̂xi, �Ri) is a 6N-dimensional vector composed of the operator �̂xi and the proton
coordinate �Ri , and Ĥ pot = Ĥ cou + Ĥ ext. n = N/V is the number density of electrons and
Ekin = 〈Ĥ kin〉/(2N) etc are the mean energies per particle. The second equality of (19) holds
because Ĥ cou ∝ |�̂x|−1 and Ĥ ext ∝ |�̂x|2. The last expression for the pressure in equation (19)
also motivates the definition of a renormalized kinetic energy

Ẽkin := Ekin − Eext. (20)
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Figure 2. Equation of state of deuterium at constant Hugoniot. The WPMD result is compared
with experiments with the Nova laser [1] and Z-pinches [2], with PIMC simulations [4], with the
Sesame database [1] and the analytical models ‘linear mixing’ [1, 14], ‘FVT’ and ‘PACH’ [15, 8].

With this definition the virial theorem takes its well-known form for Coulomb systems
p = (2n/3)(2Ẽkin + Ecou). In the high-temperature limit this yields the correct pressure
p = 2nkBT = (2n/3)2Ẽkin for a completely dissociated and ionized ideal hydrogen plasma.

Work on the implementation of the full anti-symmetrization, namely of equation (18), is in
progress. Presently the effects of the anti-symmetrization on the electron–electron interaction
are still neglected, that is, the results presented here are obtained in the approximation where
equations (13) and (18) are simplified to

Ecou,ee =
∑

kl

Vklkl = e2

4πε0

L5

π

∑
ν∈Z

3\{0}

1

�ν2
|Tr(D�ν)|2. (21)

Figure 1 shows the pressure of hydrogen as a function of density at a constant temperature
T = 300 K. The excellent agreement of our WPMD model with ‘fixed-node diffusion Monte
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Carlo’ (DMC) simulations of [19] demonstrates that essential quantum effects are treated quite
well in the WPMD scheme. The WPMD and DMC results also show qualitatively the same
behaviour as observed in the diamond anvil experiments of Loubeyre et al [13]. The overall
factor of about 1.75 between experiment and theories still, however, needs to be explained.

We also performed simulations of deuterium at a constant Hugoniot

E − E0 +
1

2

(
1

n
− 1

n0

)
(p + p0) = 0. (22)

They actually run at a constant temperature, while the density was adjusted dynamically to
fulfil equation (22), where n0 = 0.515 × 1029 m−3 is the initial number density of electrons,
p0 ≈ 0 is the initial pressure and E0 is the ground state energy per atom of the solid deuterium.
Its exact value is E0 = −15.886 eV, whereas we have E0 ≈ −13 eV in the WPMD model.

The results are presented in figure 2 together with the shock-wave experiments [1, 2] and
several theoretical approaches. Additional information on the corresponding temperatures is
given for the WPMD and path-integral Monte Carlo (PIMC) models [4] in the upper part
of figure 2. At pressures below 70 GPa, the equation of state at constant Hugoniot from
the WPMD simulations is in good agreement with both the recent experiments of Knudsen
et al [2] and most of the other theoretical results, e.g. the PIMC simulations, which predict,
however, a much higher temperature at the same pressure (see the upper part of figure 2).
The Hugoniot from the Sesame database is generally much stiffer, whereas the linear mixing
model [5], the fluid variational theory (FVT) [15, 8] and the earlier laser-driven shock-wave
experiments [1] show a larger compressibility. These differences are strongly magnified with
increasing pressure where the Nova laser experiments found a significant higher density in
the range of 73 GPa–210 GPa than many of the other approaches. Surprisingly, the WPMD
shows a similar large, about sixfold, compression around 130 GPa.

4. Conclusions and outlook

We advanced the WPMD technique, which takes into account essential quantum effects such
as the wave nature of the electrons and their indistinguishability, for applications to dense
hydrogen. Using the WPMD method we calculated the equation of state of hydrogen and
deuterium. Comparing with the experiments we see quite good agreement with the newer
experiments with Z-pinches at pressures below 70 GPa. At higher pressures the WPMD
provides a similar large density as observed from the shock waves driven by the Nova laser.

In the realization of the WPMD model presented here we still neglected the effects of anti-
symmetrization in the electron–electron interaction. The implementation of the full formula
(18) is in progress. We anticipate in general a lowering of the pressure due to the additional
exchange contributions and possibly a smoothing of the cusp in the Hugoniot equation of state
at maximal compression.
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